Electromechanical Characteristic Analysis of Passive Matrix Addressing for Grating Light Modulator

نویسندگان

  • Zhu Jin
  • Zhiyu Wen
  • Zhihai Zhang
  • Shanglian Huang
چکیده

A Grating Light Modulator (GLM) based on Micro-Electro-Mechanical Systems (MEMS) is applied in projection display. The operating principle of the GLM is introduced in this paper. The electromechanical characteristic of the passive matrix addressing GLM is studied. It was found that if the spring constant is larger, both the response frequency and the driving voltage are larger. Theoretical analysis shows that the operating voltage and the pull-in voltage of the GLM are 8.16 and 8.74 V, respectively. When an all-selected pixel in a m×n array is actuated by a voltage V(0), the voltages of the half-selected pixel in row and column are V(0)(m-1)/(m+n-1) and V(0)(n-1)/(m+n-1), respectively, and the voltage of the non-selected pixel is V(0)/(m+n-1). Finally, the experimental results indicate that the operating voltage and the pull-in voltage are 7.8 and 8.5V respectively, and the response frequency of the GLM is about 7 kHz. The crosstalk in a 16×16 GLM array is validated by the experiment. These studies provide a theoretical basis for improving the GLM driver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zone-Plate-Array Lithography (ZPAL): Optical Maskless Lithography for Cost-Effective Patterning

Zone-Plate-Array Lithography (ZPAL) is an optical-maskless-lithography technique, in which an array of tightly focused spots is formed on the surface of a substrate by means of an array of high-numerical-aperture zone plates. The substrate is scanned while an upstream spatial-light modulator, enabling “dot-matrix” style writing, modulates the light intensity in each spot. We have built a proof-...

متن کامل

Driving matrix liquid crystal displays

Liquid crystal displays had a humble beginning with wrist watches in the seventies. Continued research and development in this multi-disciplinary field have resulted in displays with increased size and complexity. After three decades of growth in performance, LCDs now offer a formidable challenge to the cathode ray tubes (CRT). A major contribution to the growth of LCD technology has come from ...

متن کامل

Greyscale in Zenithal Bistable LCD: The Route to Ultra-low Power Colour Displays

Zenithal Bistable Devices (ZBD) exhibit rugged image storage, excellent optical performance, fast latching and infinite multiplexibility. These properties arise from the use of the grating layer used to align a nematic liquid crystal. Such gratings also offer a high degree of design flexibility. In the present work, grating shape is varied within each pixel to introduce error-free analogue gre...

متن کامل

Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter.

We propose an optical system for synthesizing double-phase complex computer-generated holograms using a phase-only spatial light modulator and a phase grating filter. Two separated areas of the phase-only spatial light modulator are optically superposed by 4-f configuration with an optimally designed grating filter to synthesize arbitrary complex optical field distributions. The tolerances rela...

متن کامل

Large-Scale Polysilicon Surface Micro-Machined Spatial Light Modulator

A large-scale, high speed, high resolution, phase-only microelectromechanical system (MEMS) spatial light modulator (SLM) has been fabricated. Using polysilicon thin film technology, the micro mirror array offers significant improvement in SLM speed in comparison to alternative modulator technologies. Pixel opto-electromechanical characterization has been quantified experimentally on large scal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009